
Database-Access Performance Antipatterns
in Database-Backed Web Applications

Shudi Shao∗, Zhengyi Qiu∗, Xiao Yu∗, Wei Yang‡, Guoliang Jin∗, Tao Xie§, Xintao Wu¶
∗ North Carolina State University, {sshao, zqiu2, xyu10, guoliang jin}@ncsu.edu
‡ University of Texas at Dallas, wei.yang@utdallas.edu

§ Peking University, taoxie@pku.edu.cn
¶ University of Arkansas, xintaowu@uark.edu

Abstract—Database-backed web applications are prone to
performance bugs related to database accesses. While much work
has been conducted on database-access antipatterns with some
recent work focusing on performance impact, there still lacks a
comprehensive view of database-access performance antipatterns
in database-backed web applications. To date, no existing work
systematically reports known antipatterns in the literature, and
no existing work has studied database-access performance bugs in
major types of web applications that access databases differently.

To address this issue, we first summarize all known database-
access performance antipatterns found through our literature
survey, and we report all of them in this paper. We further
collect database-access performance bugs from web applications
that access databases through language-provided SQL interfaces,
which have been largely ignored by recent work, to check how
extensively the known antipatterns can cover these bugs. For
bugs not covered by the known antipatterns, we extract new
database-access performance antipatterns based on real-world
performance bugs from such web applications. Our study in
total reports 24 known and 10 new database-access performance
antipatterns. Our results can guide future work to develop
effective tool support for different types of web applications.

Index Terms—performance antipatterns, performance bugs,
database-backed web applications, characteristic study

I. INTRODUCTION

Databases are an integral component for server-side web
applications to store and process data produced or consumed
by end users. Performance of these database-backed web
applications is critical, as studies have shown that around half
of the users expect to load a page from the server within
two seconds [11] and will leave a page that takes longer than
three seconds to load [12], directly affecting user experience
and business profits. Sometimes, performance bugs may affect
millions of users. For example, Healthcare.gov encountered
significant performance issues after its initial deployment, and
it had to be upgraded to process a high volume of user requests
that were not anticipated [39].

Despite high criticality of performance bugs related to
database accesses, it is challenging to develop database-backed
web applications that interact with backend databases effi-
ciently. As critical performance information and constraints
of database accesses are hidden behind the database-access
interface, developers do not necessarily have good knowledge
on the performance implication of various database accesses
and the interaction between database accesses and application

code at development time. Therefore, database-access-related
performance bugs in database-backed web applications are
challenging to be avoided or identified.

To handle performance bugs especially those related to
database accesses, researchers have conducted empirical stud-
ies to understand their common characteristics or abstract
their belonging antipatterns. Some studies focus on perfor-
mance bugs in general server and client applications [28],
[37], Android applications [31], and client-side JavaScript
programs [44]. Since these performance bugs being studied are
not specific to server-side database-backed web applications,
the gained insights cannot be directly generalized to web-
application performance bugs related to database accesses.
Specific to database-backed web applications, while database-
access antipatterns have been studied for a long period of time,
it is only recently that previous work [17], [32] started to focus
specifically on antipatterns with performance impact that can
lead to performance bugs.

However, the previous work still fails to provide a com-
prehensive understanding of database-access performance an-
tipatterns in web applications.

• To summarize known database-access performance an-
tipatterns, researchers [17], [32] conducted literature sur-
veys, but they did not comprehensively cover or report an-
tipatterns that exist in the literature. Chen et al. [17] sur-
veyed five papers [18], [20], [21], [48], [50] and reported
17 antipatterns that can be used for performance-aware
refactoring. While the five surveyed papers all have a
focus on performance issues related to database accesses
in web applications, Chen et al. did not include many
more related papers and books that exist in the literature.
Lyu et al. [32] surveyed 56 research papers and 1 book
with database-access antipatterns, not all of which are
related to performance, and they reported 8 performance
antipatterns and 3 security antipatterns. While Lyu et al.
surveyed more papers and books, they unfortunately did
not report all performance antipatterns from the surveyed
literature. Their paper does not describe the reason why
some antipatterns were excluded. One guess could be
that their focus was on how mobile applications use local
databases and they excluded performance antipatterns that
were not found under this context.

• To extract new database-access performance antipatterns,

researchers studied real-world performance bugs in bug-
tracking systems [50] and/or performance issues found by
static analysis or dynamic profiling tools [17], [48], [50],
but they did not cover comprehensive types of database-
backed web applications. Recent characteristic studies fo-
cused on performance bugs in web applications developed
using different Object Relational Mapping (ORM) frame-
works, including ActiveRecord for Ruby on Rails [48],
[50] and Eloquent for PHP [17]. However, there are
still a lot of web applications that access databases by
directly constructing queries with language-provided SQL
interfaces in application code but not through ORM
frameworks, and we refer to these applications as direct-
accessing web applications. Notably, among the top 15
most popular websites [6], MediaWiki and WordPress
are open sourced, and neither of them uses an ORM
framework. It is not clear whether known performance
antipatterns in the literature can cover comprehensively
performance bugs in direct-accessing web applications.

To complement the current state of the art, in this paper,
we first conduct a literature review to summarize the current
knowledge about database-access antipatterns that can lead to
performance bugs, and our goal is to cover and report known
antipatterns in the literature as comprehensively as possible.
After gathering known antipatterns, we conduct a charac-
teristic study of performance bugs in direct-accessing web
applications to investigate whether there are new database-
access performance antipatterns not covered by the existing
research literature.

Specifically, we address the following three major research
questions in this paper:

• RQ1: What are the known database-access performance
antipatterns in the research literature?

• RQ2: How extensively can known antipatterns cover the
root causes of performance bugs in direct-accessing web
applications?

• RQ3: Are there any unknown database-access perfor-
mance antipatterns based on performance bugs in direct-
accessing web applications?

To answer RQ1, we follow the literature-survey methodol-
ogy laid out by Lyu et al. [32]. Since the list of publications
studied by Lyu et al. is not available in their paper or on their
GitHub site, where the benchmark suite and raw measurement
data are available at the time of checking, we repeat the
literature search process. In total, from our surveyed research
publications, we identify 24 performance antipatterns, which
are substantially more than those identified via the previous
two literature surveys [17], [32]. By listing all the studied
papers and reporting all the known antipatterns, future research
does not have to repeat the same literature-survey process
again and can reuse our results as the starting point.

For RQ2 and RQ3, we study 140 database-access related
performance bugs collected from the bug-tracking systems of
seven direct-accessing web applications, i.e., BugZilla, DNN,
Joomla!, MediaWiki, WordPress, Moodle, and Odoo. We make

our subject collection based on popularity of applications,
availability of bug-tracking systems, and sufficiency of in-
formation for bug understanding. Our selection covers four
different popular web-application languages, i.e., PHP, C#,
Python, and Perl.

To answer RQ2, we use the 24 known performance antipat-
terns identified while answering RQ1 to match with the root
causes of our collected performance bugs. Among the 140
collected performance bugs, 107 of them match with known
performance antipatterns.

To answer RQ3, we further extract 10 new performance
antipatterns from the 33 performance bugs identified while
answering RQ2, which cannot be covered by known perfor-
mance antipatterns. Among these 10 new antipatterns, only 1
antipattern is related to query construction and thus specific
to direct-accessing web applications, and the other 9 are all
applicable to database-backed web applications in general. Our
results confirm the necessity of studying direct-accessing web
applications to provide a more comprehensive coverage on
real-world database-access performance antipatterns.

Overall, our study not only summarizes existing knowledge
on performance antipatterns related to database accesses in
web applications, but also complements existing studies by
focusing on performance bugs in direct-accessing web appli-
cations. Our new findings include new database-access perfor-
mance antipatterns that are general to all database-backed web
applications, and our results also reveal unique characteristics
and challenges that are specific to direct-accessing database-
backed web applications.

II. METHODOLOGY

In this section, we describe our methodology on (1) how we
survey the existing literature for summarizing known database-
access performance antipatterns to answer RQ1 and (2) how
we collect and analyze performance-bug reports from popular
direct-accessing database-backed web applications to answer
RQ2 and RQ3.

A. Literature Search Protocol

We follow the literature search protocol (as described by
Lyu et al. [32]) developed based on Kitchenham’s system-
atic review guidelines [30]. Specifically, we start with 8
papers [14], [17], [18], [20], [21], [32], [48], [50] as our initial
set and conduct forward/backward citation search with the
initial set. During the process, we include papers that discover
or define at least one antipattern related to database accesses
and add them to our set. We stop when the forward/backward
citation search results in only papers that are already included.

In total, we obtain 47 papers and 1 book, while Lyu et
al. obtained 56 papers and 1 book [32]. As we include
selected papers published in only recent high-profile software-
engineering or database conferences as our initial set of
papers, while Lyu et al. did keyword search to get their
initial set from not only software-engineering and database
conferences but also security conferences, our collection could
have fewer papers focusing on security antipatterns, and thus

Table I. Subjects and bugs in our study

Subject Abbreviation Stars Commits Contributors Language Number of Bugs
BugZilla BZ 323 9483 76 Perl 51
DNN DN 712 15332 136 C# 26
Joomla! JM 1969 96463 538 PHP 15
MediaWiki MW 3514 32219 600 PHP 7
Moodle MD 3011 97654 500 PHP 24
WordPress WP 13866 41440 60 PHP 12
Odoo OD 17524 133567 1041 Python 5
Sum 140

the smaller paper number. We do not communicate with Lyu
et al. to get their publication list for comparison. However,
given our focus on performance antipatterns, the exclusion of
security-antipattern papers should have little to none impact
on the number of publications with performance antipatterns
collected from the literature; the impact is partially reflected
by the small difference on paper numbers.

From the 47 papers and 1 book, 27 papers and the 1 book
contain at least one performance antipattern. They are used to
summarize known database-access performance antipatterns in
the literature, and we refer to all of them as appropriate when
presenting known antipatterns.

B. Bug Collection and Bug-Report Examination

Based on application popularity and bug-tracking system
availability, we select seven open-source direct-accessing web
applications to answer RQ2 and RQ3: BugZilla [1], DNN [2],
Joomla! [3], MediaWiki [8], Moodle [4], WordPress [9], and
Odoo [5]. BugZilla is a bug-management system heavily used
by Mozilla and other open-source projects. DNN is a pop-
ular content-management system, and its customers include
large companies such as Bank of America, Canon, and BP.
Joomla! and MediaWiki are also popular content-management
systems, and they are used as subjects in a related study on
database applications [40]. Moodle is a learning management
system, which is widely used in schools, including North
Carolina State University where several authors of this paper
are affiliated with. WordPress is currently the most dominant
content-management system on the market [7]. Odoo is a
popular all-in-one business application. Table I shows the
numbers of stars, commits, and contributors on GitHub. Our
studied web applications are implemented using four different
programming languages, including Perl, C#, PHP, and Python,
and they all directly construct queries in application code
without using ORM frameworks.

To collect performance bugs related to database accesses,
we first search the bug-tracking systems of the selected web
applications with keywords “performance,” “timeout,” and
“slow” in order to retrieve performance bugs. After obtaining
an initial set of performance bugs, we filter out bug reports
that are not relevant to database accesses. Specifically, we
keep only the reports whose description and comments con-
tain database-related keywords, e.g., “database,” “query,” and
“schema.” Further, we include only bugs that have been closed
with fixes. Following this process, our final performance-bug

set contains 140 bug reports. In Table I, the last column shows
the number of bug reports that we collect for each application.
In comparison, a previous study [50] focusing on performance
antipatterns in Ruby-on-Rails web applications studied 140
performance bugs reported in the bug-tracking systems of 12
applications and 64 performance issues identified through pro-
filing. We focus on only performance bugs collected from bug-
tracking systems, and our number of real-world performance
bugs under study is comparable.

A bug report typically contains some bug description, fol-
lowed by some discussions and comments on possible causes
and fixes, and some intermediate fixes and the final committed
fix. To answer RQ2 and RQ3, our study centers around these
preceding parts to understand the root causes and fix strategies
of our collected bugs.

Every bug report is manually inspected and discussed by at
least three authors to ensure the objectivity of our conclusions.
We determine the root cause of each bug by examining each
bug report to understand what particular reasons in program
code, schemas, or database behaviors cause the performance
bugs, and we determine the fix strategy of each bug by
reviewing the patch submitter’s description of the fix and
inspecting the code in the patch to look for changes in the
program code, queries, or schema.

For performance bugs whose root cause and fix strategy
match known performance antipatterns, we label these per-
formance bugs accordingly. For those without any matched
known antipattern, we come up with new performance an-
tipatterns to describe the root causes and fix strategies.

III. RQ1: PERFORMANCE ANTIPATTERNS
IN THE LITERATURE

As discussed in Section II-A, we identify 27 research papers
and 1 book that discover or discuss at least one database-
access performance antipattern through our literature search
process. From these publications, we summarize 24 database-
access performance antipatterns. Table II lists all the 24
performance antipatterns, and describes the root cause and fix
strategy of each antipattern. All the 27 research papers and 1
book are cited under the “Origin” column when appropriate.
Due to space limit, we do not provide examples for these
antipatterns, and the readers can refer to the papers under the
“Origin” column if more detailed explanations and examples
are needed.

Table II. Known database-access performance antipatterns summarized from the literature

ID Name Root cause Fix strategy Origins
AP-01 Inefficient

queries
Issuing queries where semantically equivalent but
more performant alternatives exist.

Using the more performant alternatives. [14], [17], [29],
[35], [50]

AP-02 Moving
computation
to the DBMS

Computing with the results of multiple queries,
where the computation can also be done by the
DBMS, and the network round-trip cost is larger than
the query processing cost in the DBMS.

Moving the computation to the DBMS to save
the network round-trip cost.

[17], [32], [48],
[50]

AP-03 Moving
computation
to the server

Computing some results by the DBMS, which unfor-
tunately is less performant compared with computing
by the server, despite the increase in round-trip cost.

Moving the computation to the server despite
extra round-trip cost.

[15], [50]

AP-04 Loop-invariant
queries

Queries issued repeatedly in a loop always load the
same database contents and hence are unnecessary.

Moving the query out of the loop and storing the
queried results to intermediate objects.

[17], [50]

AP-05 Dead-store
queries

The results of multiple queries are loaded to the same
object, but the object is not used between some of
these reloads.

Removing queries whose results are not used. [17], [50]

AP-06 Queries with
known results

Issuing queries whose results can be determined by
examining the queries and program contexts without
actually being executed.

Replacing the queries with the known results. [17], [50]

AP-07 Redundant
condition
check

Queries issued inside condition checks and branches
are identical and return the same results.

Storing the queried results to intermediate objects
and using them in both the condition checks and
branches.

[17]

AP-08 Not caching Issuing multiple queries that are syntactically equiv-
alent or of the same template without caching the
query results.

Adding caching either using a new cache layer or
storing the query results in static objects.

[19], [32], [43],
[48], [53]

AP-09 Inefficient lazy
loading

Issuing one query to retrieve N objects from one
table, and N other queries to retrieve information
related to the N objects from another table.

Issuing one query with a join clause of the two
tables.

[17], [24], [25],
[32], [34], [50]

AP-10 Not merging se-
lection predicates

Issuing multiple SELECT queries where each loads
only a subset of the needed rows.

Loading all needed rows in one query. [13], [32], [34],
[41]

AP-11 Not merging pro-
jection predicates

Issuing multiple SELECT queries where each loads
only a subset of the needed columns.

Loading all needed columns in one query. [13], [17], [32],
[34]

AP-12 Inefficient eager
loading

Eagerly loading associated objects that are too large. Delaying the loading of the associated objects. [17], [23], [50]

AP-13 Inefficient
updating

Issuing N separate queries to update N database
records.

Batching the N update queries into a single query. [10], [17], [32],
[33], [46], [50]

AP-14 Unnecessary
column retrieval

Retrieving more columns than needed. Retrieving only the columns that are needed. [16], [17], [29],
[32], [48], [50]

AP-15 Unnecessary row
retrieval

Retrieving more rows than needed. Only retrieving the rows that are needed. [14], [16], [27],
[29], [32]

AP-16 Unnecessary
whole queries

The results of certain queries are completely unused. Removing the queries. [10], [18], [20],
[21]

AP-17 Inefficient
rendering

When a view file renders a set of objects, inefficient
APIs are used.

Using more performant APIs for view rendering. [50]

AP-18 Missing fields Fields that are costly to be derived from other fields
are not stored directly in database tables.

Storing the fields in database tables directly. [50]

AP-19 Missing indexes Appropriate indexes are not included in table
schema.

Adding the necessary indexes. [29], [35], [45],
[50]

AP-20 Table
denormalization

Issuing queries with fixed join predicates. Storing the pre-joined, i.e., denormalized, table
based on the fixed join predicates in the DBMS.

[48]

AP-21 Partial evaluation
of projections

Issuing queries that mostly use a subset of stored
fields in a table and the mostly unused fields are
much larger in data size.

Partitioning the table column-wise into a table for
frequently queried small fields and another for
less queried large fields in the DBMS.

[48]

AP-22 Partial evaluation
of selections

Issuing queries whose selection predicates contain
constant values.

Storing table rows matching the predicates with
constant values in the DBMS as a separate table.

[48]

AP-23 Unbounded
queries

Queries returning an unbounded number of records
to be displayed.

Pagination, i.e., splitting and displaying records
on different pages.

[17], [32], [49],
[48], [51], [52]

AP-24 Functionality
trade-offs

Developers introducing new functionalities that are
too costly.

Removing the costly new functionalities. [49]–[51],
[52]

Although the 24 database-access performance antipatterns
that we summarize are collectively covered by four papers
in our initial paper set via the literature search [17], [32],
[48], [50], none of them individually covers all of the 24
antipatterns. We also have to resolve some differences on
categorization and reporting strategies, antipattern naming,
and antipattern understanding to come up with the listed

database-access performance antipatterns. In the remainder of
this section, we discuss these issues related to the four papers
that can collectively cover all the 24 antipatterns.

A. Categorization and Reporting Strategies

Yang et al. [50] categorized the root causes of performance
antipatterns into several high-level categories; this categoriza-

tion is followed by Chen et al. [17]. In our 24 performance
antipatterns, [AP-01] to [AP-03] can be categorized as inef-
ficient computation, [AP-04] to [AP-08] can be categorized
as unnecessary computation, [AP-09] to [AP-13] can be cate-
gorized as inefficient data accessing, [AP-14] to [AP-16] can
be categorized as unnecessary data retrieval, [AP-17] is on
its own, [AP-18] to [AP-22] can be categorized as database-
design problems, and [AP-23] and [AP-24] can be categorized
as application-design trade-offs. Under the context of ORM-
based web applications, Yang et al. [50] considered [AP-01]
to [AP-17] all as ORM API misuses at a higher level, but this
categorization does not apply to direct-accessing applications,
as they do not simply use APIs to access databases but have
to construct queries in the applications.

Regarding [AP-01] to [AP-03], which are all categorized
into the same high-level category, inefficient computation,
while Chen et al. [17] reported this high-level category, they
did not report the three performance antipatterns. Instead, they
reported seven specific performance rules that are related to
ORM APIs. Since these rules are not applicable to direct-
accessing web applications, we report the three general per-
formance antipatterns. For performance rules that are specific
to languages or frameworks, we consider them as special cases
of general performance antipatterns instantiated on specific
applications, languages, or frameworks. Except the study by
Chen et al. [17], the same strategy is followed by all the other
three studies [32], [48], [50] among the four that collectively
cover all the 24 antipatterns.

On the other hand, we also acknowledge that there is value
in summarizing specific performance rules. The reason is
that [AP-01] (inefficient queries) is very broad. For ORM-
based web applications, many different ORM APIs can be
misused and result in performance inefficiencies, and [AP-
01] indeed can be further specialized based on different
ORM-API misuses. Since we are interested in summarizing
performance antipatterns that are applicable to both ORM-
based web applications and direct-accessing web applications,
we include only the general antipatterns.

B. Resolving Naming and Understanding Differences

The surveyed publications could sometimes use different
names for the same database-access performance antipattern,
and we choose the most intuitive name if this case occurs.
Otherwise, we inherit the names without changing them. To
this end, most of our antipattern names are inherited from the
four study papers in our initial search set.

Specifically, from the study by Yang et al. [50], we inherit
the names of [AP-01] to [AP-06], [AP-09], [AP-12], [AP-13],
[AP-17] to [AP-19], and [AP-21]; from the study by Chen et
al. [17], we inherit the names of [AP-07]; from the study by
Lyu et al. [32], we inherit the names of [AP-08], [AP-10],
[AP-11], [AP-14], [AP-15], [AP-20]; and from the study by
Yan et al. [48], we inherit the names of [AP-22] to [AP-24].

Some database-access performance antipatterns have other
names that are equally good as the ones that we choose and
are worth mentioning. Specifically, [AP-09] (inefficient lazy

Table III. Numbers of performance bugs matching the 24 known antipatterns
in applications selected by us and Yang et al. [50]

ID BZ DN JM MW WP MD OD Sum [50]
AP-01 2 1 2 0 3 1 0 9 12
AP-02 2 2 1 0 0 0 1 6 4
AP-03 4 1 0 0 1 1 0 7 2
AP-04 0 0 0 0 0 1 0 1 5
AP-05 0 0 0 0 0 0 0 0 5
AP-06 0 1 1 0 0 0 0 2 7
AP-07 0 0 0 0 0 0 0 0 0
AP-08 5 2 1 0 0 2 0 10 0
AP-09 0 0 0 0 0 0 0 0 27
AP-10 16 0 0 0 0 0 0 16 0
AP-11 0 0 0 0 0 0 0 0 0
AP-12 0 0 0 0 0 0 0 0 1
AP-13 1 0 1 0 0 1 0 3 1
AP-14 3 0 1 0 0 0 0 4 4
AP-15 2 2 0 1 1 1 2 9 1
AP-16 3 0 1 0 3 2 0 9 3
AP-17 0 0 0 0 0 0 0 0 0
AP-18 1 2 0 0 0 0 0 3 5
AP-19 3 13 1 0 1 6 0 24 30
AP-20 0 0 0 0 0 0 0 0 0
AP-21 1 0 0 0 0 0 0 1 0
AP-22 0 0 0 0 0 0 0 0 0
AP-23 2 0 0 1 0 0 0 3 14
AP-24 0 0 0 0 0 0 0 0 19
Sum 45 24 9 2 9 15 3 107 140

loading) is also known as loop to join [32] or N+1 problems;
[AP-13] (inefficient updating) is also known as unbatched
writes [32]; and [AP-23] (unbounded queries) is also known
as content display trade-offs [50].

We introduce the name of antipattern [AP-16] for cases
that belong to unnecessary data retrieval but are not [AP-14]
(unnecessary column retrieval) or [AP-15] (unnecessary row
retrieval). While the study by Lyu et al. [32] included names
for [AP-14] and [AP-15], it does not include an appropriate
name for [AP-16].

Chen et al. [17] reported a new antipattern, mid-result
misuse, which happens when there are multiple queries on the
same object, and each query retrieves different columns. In our
case, we consider it as a special case of [AP-11] not merging
projection predicates. Since Chen et al. did not include the
papers that originally discussed [AP-11] in their study, they
reported mid-result misuse as a new antipattern.

IV. RQ2: COVERAGE OF KNOWN ANTIPATTERNS
ON DATABASE-ACCESS PERFORMANCE BUGS

FROM DIRECT-ACCESSING WEB APPLICATIONS

Following the methodology described in Section II-B, we
collect 140 database-access performance bugs from seven
direct-accessing web applications. After studying their root
causes and fix strategies, we can match 107 of them with the
24 known database-access performance antipatterns described
in Section III.

Table III shows the numbers of database-access performance
bugs matching known antipatterns in each of our selected
applications. We also show the total numbers of performance
bugs matching each known antipattern from the previous study

Table IV. New antipatterns found in our studied performance bugs from direct-accessing web applications

ID Name BZ DN JM MW WP MD OD Sum
AP-25 Existing indexes not leveraged 1 0 3 0 2 3 0 9
AP-26 Non-optimal force index 0 0 0 3 0 0 0 3
AP-27 Changing subqueries to join operations 0 1 0 0 0 4 1 6
AP-28 Changing join operations to subqueries 1 1 1 1 0 1 0 5
AP-29 Joining unused tables 1 0 1 0 0 1 1 4
AP-30 Unnecessary locks 1 0 0 1 0 0 0 2
AP-31 Subquery returning duplicated rows 1 0 0 0 0 0 0 1
AP-32 Conditions containing subsuming clauses 0 0 0 0 1 0 0 1
AP-33 Unnecessary where clause when all conditions are selected 1 0 0 0 0 0 0 1
AP-34 Unnecessary query construction 0 0 1 0 0 0 0 1
Sum 6 2 6 5 3 9 2 33

focusing on ORM-based web applications using Ruby-on-
Rails [50]. Since we focus on performance bugs collected from
bug-tracking systems, we exclude the problematic actions that
they identified through profiling. Thus, although antipattern
[AP-17] was reported by Yang et al. [50], the corresponding
number in the last column of Table III is 0, as this antipattern
does not appear in performance bugs collected from bug-
tracking systems. Other antipatterns with their corresponding
numbers as 0 in the last column were not reported by Yang
et al. [50]. Antipatterns [AP-14] to [AP-16] were reported as
a single antipattern, unnecessary data retrieval, by Yang et
al. [50], and we further categorize their studied bugs falling
into unnecessary data retrieval with a finer granularity.

In total, 107 of our studied bugs can be categorized with
15 out of the 24 known antipatterns, while performance bugs
studied by Yang et al. [50] can be categorized with 16 out of
the 24 known antipatterns. In this sense, these two studies are
of similar representative on covering known database-access
performance antipatterns. However, 33 out of our studied bugs
cannot be categorized into known antipatterns, revealing that
there are new antipatterns not covered by the current research
literature. This result shows that studying performance bugs
in direct-accessing database-backed web applications indeed
can improve the coverage of real-world database-access per-
formance antipatterns.

Both studies cover [AP-01] to [AP-04], [AP-06], [AP-13]
to [AP-16], [AP-18], [AP-19], and [AP-23]. The number of
studied performance bugs matching [AP-19] (missing indexes)
is the highest in both studies. This result shows that it is
challenging for developers to pick the optimal indexes at
the database design phase regardless of whether the web
applications are direct-accessing or ORM-based. Among the
12 antipatterns covered by both studies, the number differences
on [AP-15], [AP-16], and [AP-23] are larger than five. [AP-
14] to [AP-16] are the three antipatterns falling into the same
high-level category, unnecessary data retrieval, and our study
has 14 more bugs matching [AP-14] to [AP-16] combined. On
[AP-23] (unbounded queries), the study by Yang et al. [50] has
11 more bugs than ours. We find number differences on the
other nine shared antipatterns not significant.

Seven antipatterns appear in the study by Yang et al. [50] or
in our study but not both. Specifically, antipatterns appear in
only our studied bugs are [AP-08] (not caching), [AP-10] (not

merging project predicates), and [AP-21] (partial evaluation
of projections), while antipatterns appear in only their studied
bugs are [AP-05] (dead-store queries), [AP-09] (inefficient
lazy loading), [AP-12] (inefficient eager loading), and [AP-
24] (functionality trade-offs). Other than [AP-12] and [AP-21]
where the number difference is one in both cases, the number
differences for the other antipatterns are at least five. [AP-09]
and [AP-10] are related, where both have N queries that can
be merged into a single query, while [AP-09] further merges
the one query, which returns N objects and leads to N queries,
with the N queries into a single query. For the differences on
[AP-05], [AP-08], and [AP-24], we find it difficult to come
up with definite explanations.

Both studies do not have bugs matching five database-
access performance antipatterns: [AP-07] (redundant condition
check), [AP-11] (not merging projection predicates), [AP-
17] (inefficient rendering), [AP-20] (table denormalization),
and [AP-22] (partial evaluation of selection). Among these
five antipatterns, the first two are generally applicable to
both direct-accessing web applications and ORM-based web
applications, although both studies do not have matching bugs;
the third one was reported by Yang et al. [50] in problematic
actions identified through profiling; and the last two are less
likely to match performance bugs from bug-tracking systems
than the first three as the last two involve high-level database-
design changes.

V. NEW PERFORMANCE ANTIPATTERNS

From the 33 bugs that do not match with known antipat-
terns found in the literature, we derive 10 new database-
access performance antipatterns. Table IV shows the overall
results. Below, we first describe each new database-access
performance antipattern in detail. For each antipattern, we first
describe the root cause and fix strategy and then present real-
world performance-bug examples. After that, we conclude this
section with a discussion.

A. Details of the New Performance Antipatterns

[AP-25] Existing indexes not leveraged

Root cause: Due to unawareness of existing indexes or
mismatches among queries and table schema definitions, the
queries fail to leverage existing indexes.

Before fix
query = "SELECT comment_date_gmt FROM comments WHERE ...

ORDER BY comment_date DESC LIMIT 1;"

After fix
query = "SELECT comment_date_gmt FROM comments WHERE ...

ORDER BY comment_date_gmt DESC LIMIT 1;"

Affected table schema
CREATE TABLE comment(
...
(no KEY on comment_date)
KEY comment_date_gmt (comment_date_gmt)

)

Fig. 1. WordPress bug #4366. Before and after code snippets are shown.

The affected query
query = "SELECT ... FROM ’#__content’ AS a LEFT JOIN ...

LEFT JOIN ’#__associations’ AS asso ON asso.id =
a.id ..."

- CREATE TABLE IF NOT EXISTS ’#__associations’
- (’id’ varchar(50) NOT NULL, ...)
+ CREATE TABLE IF NOT EXISTS ’#__associations’
+ (’id’ INT(11) NOT NULL, ...)

Fig. 2. Joomla! bug #29845. Patch diff results are shown.

Fix Strategy: Change the queries or table schema definitions
so that existing indexes can be taken advantage of.
Examples: Figure 1 shows WordPress #4366, where the buggy
code orders the results by the unindexed comment_date,
and the fix is to order the results by commend_data_gmt
that is already indexed.

Figure 2 shows Joomla! #29845, where the problem is more
subtle. The problem is mismatched column types between
two tables: the join operation joins the id column in table
#__associations with a column in another table, where
the type of column id is string, but the type of the column in
the other table is integer. When the database engine performs
the join operation, it has to do an extra type conversion on
the two columns with different data types. After casting, the
index cannot be leveraged, causing significant performance
slowdown. The patch changes the type of column id from
varchar to INT.

[AP-26] Non-optimal force index

Root cause: Developers construct queries with a force index,
which unfortunately is not optimal.
Fix Strategy: Removing the force index and using the optimal
index.
Examples: Figure 3 shows MediaWiki #59285. With the force
index on page_random, the query will check the where
conditions starting with the indexed column page_random
and then continue to check other conditions for each record.
However, there are a lot of rows satisfying the condition
page_random >= 0. So the size of rows to be checked
with other conditions will still be large. The fix removes
the force index on page_random. After patching, the
database engine will start with checking the indexed column

Before fix
query = "SELECT ... FROM page FORCE INDEX (page_random)

WHERE page_namespace = $page AND page_is_redirect =
’0’ AND page_random >= 0 ORDER BY page_random LIMIT
1;"

After fix
query = "SELECT ... FROM page WHERE page_namespace =

$page AND page_is_redirect = ’0’ AND page_random >=
0 ORDER BY page_random LIMIT 1;"

Affected table schema
CREATE TABLE page(
...
KEY page_namespace (page_namespace)
KEY page_random (page_random)

)

Fig. 3. MediaWiki bug #59285. Before and after code snippets are shown.

$sql = "SELECT gi.id FROM {grade_items} gi
- WHERE ... AND gi.categoryid IN (
- SELECT gc.id FROM {grade_categories} gc
- WHERE gc.path LIKE ?)"
+ JOIN {grade_categories} gc ON gi.categoryid = gc.id
+ WHERE ... AND gi.courseid = ?
+ AND gc.path LIKE ?"

Fig. 4. Moodle bug #42065. Patch diff results are shown.

page_namespace and find a small number of rows satisfy-
ing the condition on page_namespace, leading to speedup
on query execution.

[AP-27] Changing subqueries to join operations

Root cause: When a query can be implemented with sub-
queries or join operations, there are cases where using join
operations is more efficient. This situation can happen when
the size of the joined tables is not large.
Fix Strategy: Changing subqueries to join operations.
Examples: Figure 4 shows Moodle #42065, where the
fix changes the way how the categoryid field of the
grade_items table is matched with the id field of the
grade_categories table from an IN clause with a sub-
query to a JOIN operation. Since the size of each table is
not large, the cost of joining those tables is smaller than the
subquery, which will need to create and destroy temporary
storage for subquery results.

[AP-28] Changing join operations to subqueries

Root cause: When a query can be implemented with sub-
queries or join operations, there are cases where using sub-
queries is more efficient. This situation can happen when the
size of the joined tables is large.
Fix Strategy: Changing join operations to subqueries.
Examples: Figure 5 shows Moodle #32340. In order to fix
this bug, the patch changes the way how the id field of the
course table is matched with the courseid field of the
event table from a JOIN operation to an EXISTS clause
with a subquery. The fix improves performance as doing a
subquery on the event table takes less time than joining
multiple tables that are very large.

$sql = "SELECT c.*, ... FROM ... JOIN {course} c
- JOIN {event} e ON e.courseid = c.id
+ WHERE EXISTS (SELECT 1 FROM
+ {event} e WHERE e.courseid = c.id)

Fig. 5. Moodle bug #32340. Patch diff results are shown.

Construct the join clause
- $join .= "LEFT JOIN bugs_activity actcheck");

Construct the where conditions
...
my @list;
foreach my $f (@chfield) {

if(...){
push(@list, "actcheck.fieldid = " . get_field($f));

} else {
...

}
}

if(@list) {
+ $join .= "LEFT JOIN bugs_activity actcheck");

foreach my $l (@list){
$where .= $l;

}
}

$where .= ...
...

$query .= $join . $where

Fig. 6. BugZilla bug #226284. Patch diff results are shown.

[AP-29] Joining unused tables

Root cause: Queries join tables that are not used.
Fix Strategy: Removing the tables being joined but not used
by queries.
Examples: Figure 6 shows BugZilla #226284. For each value
in the @chfield list, if it satisfies certain conditions, the
value will be compared with the actcheck.fieldid field,
where actcheck is an alias for the bugs_activity table.
However, if no value in the @chfield list satisfies the
conditions, it is unnecessary to join the bugs_activity
table. The buggy code joins the bugs_activity table at
the beginning, while the fix joins the table only if it will really
be checked against with.

[AP-30] Unnecessary locks

Root cause: Tables get locked unnecessarily while executing
some queries.
Fix Strategy: Remove the unnecessary locks in the queries.
Examples: Figure 7 shows BugZilla #301020, where the
queries update some fields in the components table with
a WRITE lock. Since the information of a component’s
initialowner and initialqacontact actually corre-
spond to a user’s username, which is stored in the profiles
table. So, a READ lock needs to be added on the profiles
table. No information stored in the products table is needed
by these queries. Therefore, the READ lock on the products
table is unnecessary and removed by the patch.

Lock tables
- $dbh->bz_lock_tables(’components WRITE’, ’products

READ’, ’profiles READ’);
+ $dbh->bz_lock_tables(’components WRITE’, ’profiles

READ’);

Execute queries
$dbh->do("UPDATE components SET name = ? WHERE id = ?",

$name, $component_id);
$dbh->do("UPDATE components SET initialowner = ? WHERE

id = ?", $assignee_id, $component_id);
$dbh->do("UPDATE components SET description = ? WHERE id

= ?", $description, $component_id);
$dbh->do("UPDATE components SET initialqacontact = ?

WHERE id = ?", $qacontact_id, $component_id);

Unlock tables
$dbh->bz_unlock_tables();

Fig. 7. BugZilla bug #301020. Patch diff results are shown.

Before fix
query = "SELECT ... FROM ... LEFT JOIN bugs LEFT JOIN

(SELECT bug_id FROM comments WHERE ...) as c ON
bugs.bug_id = c.bug_id ... WHERE ...;"

After fix
query = "SELECT ... FROM ... LEFT JOIN bugs LEFT JOIN

(SELECT DISTINCT bug_id FROM comments WHERE ...) as
c ON bugs.bug_id = c.bug_id ... WHERE ...;"

Fig. 8. BugZilla bug #818007. Before and after code snippets are shown.

[AP-31] Subquery returning duplicated rows

Root cause: Subqueries in a query could return duplicated
rows, leading to unnecessary computation in the query.
Fix Strategy: Removing duplicated rows from the results of
subqueries.
Examples: Figure 8 shows BugZilla #818007, where the
results of a SELECT subquery will be used as a table to
be joined in the query. The problem is that the result of the
subquery contains a large number of duplicates. After adding
a DISTINCT keyword to remove the duplicates, the subquery
dramatically reduces the amount of data returned, reducing
the time needed for the query to join the result table of the
subquery.

[AP-32] Conditions containing subsuming clauses

Root cause: A query could contain condition clauses where
one may subsume another, leading to unnecessary computation
in the query.
Fix Strategy: Removing the condition clauses that are sub-
sumed by others.
Examples: Figure 9 shows WordPress #17152. The com-
parison with the whole $search_term string for string
search in the text is not necessary, because if all substrings
of $search_term have been searched in the text, there is
no need to search the whole $search_term string in the
text. The fix removes the condition clause that compares with
the whole $search_term string; this clause is subsumed by
condition clauses that compare with its substrings, and thus is
unnecessary.

foreach((array) $q[’search_terms’] as $term) {
$search .= "$searchand" . "(($wpdb->posts.post_title

LIKE ’%{$term}%’) OR ($wpdb->posts.post_content
LIKE ’%{$term}%’))";

$searchand = ’ AND ’;
}
- $search .= " OR ($wpdb->posts.post_title LIKE

’%{$search_term}%’) OR ($wpdb->posts.post_content
LIKE ’%{$search_term}%’)";

Fig. 9. WordPress bug #17152. Patch diff results are shown.

+ if ($params->param(’bug_status’)) {
+ my @bug_statuses = $params->param(’bug_status’);
+ if (scalar(@bug_statuses) ==

scalar(@::legal_bug_status)) {
+ $params->delete(’bug_status’);
+ }
+ }
+
+ if ($params->param(’resolution’)) {
+ my @resolution = $params->param(’resolution’);
+ if (scalar(@resolution) ==

scalar(@::legal_resolution)) {
+ $params->delete(’resolution’);
+ }
+ }
+

foreach my $field ($params->param()) {
push(@where, join("OR" . @params->param($field)));

}

Fig. 10. BugZilla bug #173571. Patch diff results are shown.

[AP-33] Unnecessary where clause when all conditions are
selected

Root cause: A query could contain where condition clauses
that compare a field with all its possible values, making all
these clauses unnecessary.
Fix Strategy: Removing the where condition clauses that
cover all possible values.
Examples: Figure 10 shows BugZilla #173571. In this exam-
ple, the query will build a clause into the where condition for
each user-selected value. When all possible legal values of a
column are selected, there is no need to include those clauses
into the where condition. The fix removes the condition
clauses on bug_stats and resolution to save the time
for checking these conditions.

[AP-34] Unnecessary query construction

Root cause: A query is constructed but not sent to the DBMS
for execution.
Fix Strategy: Remove the unnecessary query-construction
code logic.
Examples: Figure 11 shows Joomla! #23164. Originally, the
application first constructs a query, and then tries to load data
from cache. If there is a cache hit, the query will not be
executed. The fix instead gets cache results first (doing so
is fast), and constructs the query only if there is a cache miss.

B. Discussion

The 10 new database-access performance antipatterns un-
veiled by our study show the benefits of going beyond ORM-

Before fix
Construct the query
$query .= "SELECT ...";
$query .= "FROM ...";
$query .= "LEFT JOIN ... ON ..."
$query .= "WHERE ..."

#Check if cache is empty
$modules = $cache->get($cacheid);
if (null === $modules){

$modules = $db->loadObjectList();
}

After fix
Check if cache is empty
if(!($modules = $cache->get($cacheid)){

Construct the query
$query .= "SELECT ...";
$query .= "FROM ...";
$query .= "LEFT JOIN ... ON ..."
$query .= "WHERE ..."
$modules = $db->loadObjectList();

}

Fig. 11. Joomla! bug #23164. Before and after code snippets are shown.

based web applications and studying performance bugs in
direct-accessing web applications.

On the generality of the 10 new database-access perfor-
mance antipatterns, we believe that all the 10 new antipatterns
are applicable to other direct-accessing web applications.
Although the numbers of some antipatterns are small, e.g.,
[AP-31] to [AP-34] each have only one matching performance
bug in our study, the necessary program and query features are
all general to all direct-accessing web applications, and similar
mistakes can happen. Therefore, we consider these antipatterns
as new ones despite the small numbers of studied bugs falling
into some of the antipatterns.

Among the 10 new antipatterns, the first nine, i.e., [AP-
25] to [AP-33], are also applicable to ORM-based web ap-
plications, as the underlying root causes are not specific to
direct-accessing web applications and the necessary features
involved in each antipattern are available in ORM frameworks.
Since ORM-based web applications do not construct queries
directly, [AP-34] (unnecessary query construction) is not di-
rectly applicable to ORM-based web applications. However,
an analogy exists, i.e., ORM frameworks could perform un-
necessary query construction while translating ORM-API calls
to queries.

Among the 33 performance bugs matching new performance
antipatterns, 12 of them match antipatterns [AP-25] or [AP-
26], both of which are related to database indexes. We have
discussed a similar finding in Section IV that the number of
performance bugs matching [AP-19] missing indexes is the
largest both in our study and the study by Yang et al. [50].
Our results on direct-accessing web applications show that the
challenges of using database indexes effectively go beyond the
phase of database table design but also lie in how to select and
use appropriate indexes.

Similar to the known performance antipatterns, where duos
of opposite antipatterns exist, e.g., [AP-02] (moving compu-
tation to the DMBS) vs. [AP-03] (moving computation to

the server), and [AP-09] (inefficient lazy loading) vs. [AP-
12] (inefficient eager loading), one duo of opposite exists
in our new antipatterns, i.e., [AP-27] (changing subqueries
to join operations) vs. [AP-28] (changing join operations to
subqueries). This case serves as another example that one-fits-
all design does not exist for accessing database efficiently in
web applications.

Although only one antipattern can be considered as unique
for direct-accessing web applications, i.e., [AP-34] (unneces-
sary query construction), detecting performance bugs in direct-
accessing web applications using antipatterns shared with
ORM-based web applications may encounter extra challenges
due to the difference between ORM-based web applications
and direct-accessing web applications. For example, it will be
necessary to implement string analysis [26] or other necessary
techniques to handle dynamically generated queries in direct-
accessing web applications. We leave for future work the de-
sign, development, and evaluation of bug detection techniques
that leverage the 34 database-access performance antipatterns.

VI. RELATED WORK

Earlier in this paper, we have discussed related work on
database-access antipatterns and performance-bug studies. Our
work is unique in that we target at reporting all known
database-access performance antipatterns that can be found in
the literature and complementing existing studies by focusing
on direct-accessing web applications. We next discuss other
related work.

Various previous approaches focus on detecting antipatterns.
Some of them do not focus on performance antipatterns
but on functionality antipatterns [13], [20], [29], and some
of them focus on performance antipatterns in ORM-based
applications [18], [21], [51]. Our results suggest that there are
multiple performance antipatterns that are currently missed by
existing work on ORM-based web applications, and direct-
accessing web applications deserve more research attention.

Both static approaches [21], [28], [31], [37], [44], [48],
[50], [51] and dynamic approaches [36], [38], [47] have been
explored to detect different types of performance issues. It is
challenging to develop static checkers for applications studied
in our work, as currently there is a lack of mature implementa-
tions that can statically analyze dynamically generated queries
involving multiple programming languages. Future work can
leverage lessons from our study to develop performance bug
detection tools for direct-accessing web applications.

There are multiple pieces of work focusing on improving the
performance of database-backed applications [15], [19], [22],
[23], [34], [42]. Although some of the key ideas are similar
to the fix strategies seen in performance-bug patches, such
as reducing database accesses and optimizing query execution
efficiency, these database-side optimization approaches cannot
optimize away the performance inefficiencies of related bugs
in our study, as existing approaches are usually limited to
a single round-trip between application and database, while
many database-access antipatterns involve multiple round-
trips. Future work can leverage database-access antipatterns

summarized in our study to develop more comprehensive and
powerful optimization approaches.

VII. THREATS TO VALIDITY

The validity of our study results may be subject to multiple
threats. Below we describe potential threats and our ways to
address them.

The first threat is the likely incompleteness of our surveyed
publications. We alleviate this threat by following the state-
of-the-art literature-survey methodology, and we cross-check
our results with the previous literature surveys on the surveyed
publications and the reported antipatterns.

The second threat is the likely lack of representativeness of
the studied applications. To minimize this threat, we choose
popular open-source applications with a significant user base.
Although BugZilla has the largest number of studied bugs,
it does not bias our results, because the overall distribution
of categorized bugs spreads across different web applications
and antipatterns. So the characteristics of our studied bugs
can likely be generalized to other database-backed web appli-
cations.

The third threat is that we may miss relevant bug reports
during our search for performance bugs. We mitigate this
threat by using keyword search together with bug categories
and tags. We also search bug descriptions and comments in
addition to bug report summaries, as developers tend to use
common terms in the description and comments.

The fourth threat is related to our manual inspection of the
collected bug reports. The manual inspection is independently
performed and verified by at least three authors to alleviate
this threat. If there are different opinions on a bug report, we
discuss the bug report together to reach a consensus.

VIII. CONCLUSION

In this paper, we have presented a comprehensive empirical
study that characterizes performance antipatterns related to
database accesses in web applications. From our literature
survey, we have summarized and reported a total of 24 known
performance antipatterns, and the comprehensiveness of our
results makes it a great reference for future work on database-
access performance antipatterns. Based on real-world perfor-
mance bugs from direct-accessing web applications, we have
found 10 new database-access performance antipatterns that
are not previously reported in the research literature. Our study
results can guide future research in combating performance
bugs related to database accesses in web applications.

IX. ACKNOWLEDGMENTS

This work was supported in part by US NSF grant no. CCF-
2008056, CNS-1564274, CCF-1816615. Tao Xie is with the
Key Laboratory of High Confidence Software Technologies
(Peking University), Ministry of Education, and is the corre-
sponding author.

REFERENCES

[1] “Bugzilla,” https://bugzilla.mozilla.org/.
[2] “Dnn platform issue tracker,” https://dnntracker.atlassian.net.
[3] “Joomla! developer network,” https://developer.joomla.org/.
[4] “Moodle tracker,” https://tracker.moodle.org/.
[5] “Odoo issues,” https://github.com/odoo/odoo/issues/.
[6] “Top 15 Most Popular Websites — January 2020,” http://www.ebizmba.

com/articles/most-popular-websites.
[7] “Usage statistics and market share of WordPress for websites,” https:

//w3techs.com/technologies/details/cm-wordpress/all/all.
[8] “Wikimedia phabricator,” https://phabricator.wikimedia.org/.
[9] “Wordpress trac,” https://core.trac.wordpress.org/.

[10] T. M. Ahmed, C.-P. Bezemer, T.-H. Chen, A. E. Hassan, and
W. Shang, “Studying the effectiveness of application performance
management (APM) tools for detecting performance regressions for
web applications: An experience report,” in Proceedings of the 13th
International Conference on Mining Software Repositories, ser. MSR
’16. New York, NY, USA: Association for Computing Machinery, 2016,
p. 1–12. [Online]. Available: https://doi.org/10.1145/2901739.2901774

[11] Akamai Technologies, Inc, “Akamai Reveals 2 Seconds as the New
Threshold of Acceptability for eCommerce Web Page Response
Times,” https://www.akamai.com/us/en/about/news/press/2009-
press/akamai-reveals-2-seconds-as-the-new-threshold-of-acceptability-
for-ecommerce-web-page-response-times.jsp, 2009.

[12] ——, “Akamai Online Retail Performance Report: Milliseconds
Are Critical,” https://www.akamai.com/us/en/about/news/press/2017-
press/akamai-releases-spring-2017-state-of-online-retail-performance-
report.jsp, 2017.

[13] N. Arzamasova, M. Schäler, and K. Böhm, “Cleaning antipatterns
in an SQL query log,” IEEE Transactions on Knowledge and Data
Engineering, vol. 30, no. 3, pp. 421–434, March 2018.

[14] B. Asmare Muse, M. Masudur Rahman, C. Nagy, A. Cleve, F. Khomh,
and G. Antoniol, “On the prevalence, impact, and evolution of SQL
code smells in data-intensive systems,” in Proceedings of the 17th
International Conference on Mining Software Repositories, ser. MSR
’20. New York, NY, USA: Association for Computing Machinery,
2020. [Online]. Available: https://doi.org/10.1145/3379597.3387467

[15] I. T. Bowman and K. Salem, “Optimization of query streams
using semantic prefetching,” ACM Trans. Database Syst., vol. 30,
no. 4, pp. 1056–1101, Dec. 2005. [Online]. Available: http:
//doi.acm.org/10.1145/1114244.1114250

[16] S. Chaudhuri, V. Narasayya, and M. Syamala, “Bridging the application
and dbms profiling divide for database application developers,” in
Proceedings of the 33rd International Conference on Very Large Data
Bases, ser. VLDB ’07. VLDB Endowment, 2007, p. 1252–1262.

[17] B. Chen, Z. M. J. Jiang, P. Matos, and M. Lacaria, “An industrial
experience report on performance-aware refactoring on a database-
centric web application,” in Proceedings of the 34th IEEE/ACM
International Conference on Automated Software Engineering, ser.
ASE ’19. IEEE Press, 2019, p. 653–664. [Online]. Available:
https://doi.org/10.1109/ASE.2019.00066

[18] T. Chen, W. Shang, Z. M. Jiang, A. E. Hassan, M. Nasser, and
P. Flora, “Finding and evaluating the performance impact of redundant
data access for applications that are developed using object-relational
mapping frameworks,” IEEE Transactions on Software Engineering,
vol. 42, no. 12, pp. 1148–1161, Dec 2016.

[19] T.-H. Chen, W. Shang, A. E. Hassan, M. Nasser, and P. Flora,
“Cacheoptimizer: Helping developers configure caching frameworks for
hibernate-based database-centric web applications,” in Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, ser. FSE ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 666–677. [Online].
Available: https://doi.org/10.1145/2950290.2950303

[20] ——, “Detecting problems in the database access code of large
scale systems: An industrial experience report,” in Proceedings
of the 38th International Conference on Software Engineering
Companion, ser. ICSE ’16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 71–80. [Online]. Available:
https://doi.org/10.1145/2889160.2889228

[21] T.-H. Chen, W. Shang, Z. M. Jiang, A. E. Hassan, M. Nasser,
and P. Flora, “Detecting performance anti-patterns for applications
developed using object-relational mapping,” in Proceedings of the 36th
International Conference on Software Engineering, ser. ICSE ’14.

New York, NY, USA: Association for Computing Machinery, 2014,
p. 1001–1012. [Online]. Available: https://doi.org/10.1145/2568225.
2568259

[22] A. Cheung, S. Madden, O. Arden, and A. C. Myers, “Automatic
partitioning of database applications,” Proc. VLDB Endow., vol. 5,
no. 11, pp. 1471–1482, Jul. 2012. [Online]. Available: http:
//dx.doi.org/10.14778/2350229.2350262

[23] A. Cheung, S. Madden, and A. Solar-Lezama, “Sloth: Being lazy is
a virtue (when issuing database queries),” in Proceedings of the 2014
ACM SIGMOD International Conference on Management of Data, ser.
SIGMOD ’14. New York, NY, USA: ACM, 2014, pp. 931–942.
[Online]. Available: http://doi.acm.org/10.1145/2588555.2593672

[24] A. Cheung, S. Madden, A. Solar-Lezama, O. Arden, and A. C. Myers,
“Using program analysis to improve database applications,” IEEE Data
Engineering Bulletin, vol. 37, no. 1, pp. 48–59, 2014.

[25] A. Cheung, A. Solar-Lezama, and S. Madden, “Optimizing database-
backed applications with query synthesis,” in Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’13. New York, NY, USA: Association
for Computing Machinery, 2013, p. 3–14. [Online]. Available:
https://doi.org/10.1145/2491956.2462180

[26] A. S. Christensen, A. Møller, and M. I. Schwartzbach, “Precise
analysis of string expressions,” in Proceedings of the 10th International
Conference on Static Analysis, ser. SAS ’03. Berlin, Heidelberg:
Springer-Verlag, 2003, pp. 1–18. [Online]. Available: http://dl.acm.org/
citation.cfm?id=1760267.1760269

[27] R. F. Dugan, E. P. Glinert, and A. Shokoufandeh, “The sisyphus database
retrieval software performance antipattern,” in Proceedings of the 3rd
International Workshop on Software and Performance, ser. WOSP ’02.
New York, NY, USA: Association for Computing Machinery, 2002, p.
10–16. [Online]. Available: https://doi.org/10.1145/584369.584372

[28] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu, “Understanding and
detecting real-world performance bugs,” in Proceedings of the 33rd
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’12. New York, NY, USA: ACM, 2012,
pp. 77–88. [Online]. Available: http://doi.acm.org/10.1145/2254064.
2254075

[29] B. Karwin, SQL Antipatterns: Avoiding the Pitfalls of Database Pro-
gramming, 1st ed. Pragmatic Bookshelf, 2010.

[30] B. Kitchenham, “Procedures for performing systematic reviews,” Joint
Technical Report, Computer Science Department, 2004, Keele Univer-
sity (TR/SE-0401) and National ICT Australia Ltd. (0400011T.1), 2004.

[31] Y. Liu, C. Xu, and S.-C. Cheung, “Characterizing and detecting
performance bugs for smartphone applications,” in Proceedings of the
36th International Conference on Software Engineering, ser. ICSE ’14.
New York, NY, USA: ACM, 2014, pp. 1013–1024. [Online]. Available:
http://doi.acm.org/10.1145/2568225.2568229

[32] Y. Lyu, A. Alotaibi, and W. G. J. Halfond, “Quantifying the
performance impact of SQL antipatterns on mobile applications,” in
Proceedings of the 2019 IEEE International Conference on Software
Maintenance and Evolution, ser. ICSME ’19. IEEE, 2019, pp. 53–64.
[Online]. Available: https://doi.org/10.1109/ICSME.2019.00015

[33] Y. Lyu, D. Li, and W. G. J. Halfond, “Remove rats from your
code: Automated optimization of resource inefficient database writes
for mobile applications,” in Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ser. ISSTA
’18. New York, NY, USA: Association for Computing Machinery,
2018, p. 310–321. [Online]. Available: https://doi.org/10.1145/3213846.
3213865

[34] A. Manjhi, C. Garrod, B. M. Maggs, T. C. Mowry, and A. Tomasic,
“Holistic query transformations for dynamic web applications,”
in Proceedings of the 2009 IEEE International Conference on
Data Engineering, ser. ICDE ’09. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 1175–1178. [Online]. Available: http:
//dx.doi.org/10.1109/ICDE.2009.194

[35] C. Nagy and A. Cleve, “SQLInspect: A static analyzer to inspect
database usage in Java applications,” in Proceedings of the 40th
International Conference on Software Engineering: Companion
Proceedings, ser. ICSE ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 93–96. [Online]. Available:
https://doi.org/10.1145/3183440.3183496

[36] K. Nguyen and G. Xu, “Cachetor: Detecting cacheable data to
remove bloat,” in Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, ser. ESEC/FSE ’13. New

York, NY, USA: ACM, 2013, pp. 268–278. [Online]. Available:
http://doi.acm.org/10.1145/2491411.2491416

[37] A. Nistor, T. Jiang, and L. Tan, “Discovering, reporting, and fixing
performance bugs,” in Proceedings of the 10th Working Conference
on Mining Software Repositories, ser. MSR ’13. Piscataway,
NJ, USA: IEEE Press, 2013, pp. 237–246. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2487085.2487134

[38] A. Nistor, L. Song, D. Marinov, and S. Lu, “Toddler: Detecting
performance problems via similar memory-access patterns,” in
Proceedings of the 2013 International Conference on Software
Engineering, ser. ICSE ’13. Piscataway, NJ, USA: IEEE Press,
2013, pp. 562–571. [Online]. Available: http://dl.acm.org/citation.cfm?
id=2486788.2486862

[39] U. S. G. A. Office, “ HEALTHCARE.GOV CMS Has Taken Steps to
Address Problems, but Needs to Further Implement Systems Develop-
ment Best Practices,” http://www.gao.gov/assets/670/668834.pdf.

[40] D. Qiu, B. Li, and Z. Su, “An empirical analysis of the co-evolution
of schema and code in database applications,” in Proceedings of the
2013 9th Joint Meeting on Foundations of Software Engineering, ser.
ESEC/FSE ’13. New York, NY, USA: ACM, 2013, pp. 125–135.
[Online]. Available: http://doi.acm.org/10.1145/2491411.2491431

[41] K. Ramachandra, M. Chavan, R. Guravannavar, and S. Sudarshan, “Pro-
gram transformations for asynchronous and batched query submission,”
IEEE Transactions on Knowledge and Data Engineering, vol. 27, no. 2,
pp. 531–544, 2015.

[42] K. Ramachandra and S. Sudarshan, “Holistic optimization by
prefetching query results,” in Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’12.
New York, NY, USA: ACM, 2012, pp. 133–144. [Online]. Available:
http://doi.acm.org/10.1145/2213836.2213852

[43] Z. Scully and A. Chlipala, “A program optimization for automatic
database result caching,” in Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, ser. POPL ’17.
New York, NY, USA: Association for Computing Machinery, 2017, p.
271–284. [Online]. Available: https://doi.org/10.1145/3009837.3009891

[44] M. Selakovic and M. Pradel, “Performance issues and optimizations
in JavaScript: An empirical study,” in Proceedings of the 38th
International Conference on Software Engineering, ser. ICSE ’16.
New York, NY, USA: ACM, 2016, pp. 61–72. [Online]. Available:
http://doi.acm.org/10.1145/2884781.2884829

[45] T. Sharma, M. Fragkoulis, S. Rizou, M. Bruntink, and D. Spinellis,
“Smelly relations: Measuring and understanding database schema
quality,” in Proceedings of the 40th International Conference on
Software Engineering: Software Engineering in Practice, ser. ICSE-SEIP
’18. New York, NY, USA: Association for Computing Machinery, 2018,
p. 55–64. [Online]. Available: https://doi.org/10.1145/3183519.3183529

[46] J. M. Tamayo, A. Aiken, N. Bronson, and M. Sagiv, “Understanding the
behavior of database operations under program control,” in Proceedings
of the ACM International Conference on Object Oriented Programming
Systems Languages and Applications, ser. OOPSLA ’12. New York,
NY, USA: Association for Computing Machinery, 2012, p. 983–996.
[Online]. Available: https://doi.org/10.1145/2384616.2384688

[47] X. Xiao, S. Han, D. Zhang, and T. Xie, “Context-sensitive
delta inference for identifying workload-dependent performance
bottlenecks,” in Proceedings of the 2013 International Symposium
on Software Testing and Analysis, ser. ISSTA ’13. New York,
NY, USA: ACM, 2013, pp. 90–100. [Online]. Available: http:
//doi.acm.org/10.1145/2483760.2483784

[48] C. Yan, A. Cheung, J. Yang, and S. Lu, “Understanding database
performance inefficiencies in real-world web applications,” in
Proceedings of the 2017 ACM on Conference on Information
and Knowledge Management, ser. CIKM ’17. New York,
NY, USA: ACM, 2017, pp. 1299–1308. [Online]. Available:
http://doi.acm.org/10.1145/3132847.3132954

[49] ——, “View-driven optimization of database-backed web applications,”
in 10th BiAnnualennial Conference on Innovative Data Systems Re-
search, ser. CIDR ’20. www.cidrdb.org, 2020.

[50] J. Yang, P. Subramaniam, S. Lu, C. Yan, and A. Cheung, “How
not to structure your database-backed web applications: A study of
performance bugs in the wild,” in Proceedings of the 40th International
Conference on Software Engineering, ser. ICSE ’18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 800–810.
[Online]. Available: https://doi.org/10.1145/3180155.3180194

[51] J. Yang, C. Yan, P. Subramaniam, S. Lu, and A. Cheung, “Powerstation:
Automatically detecting and fixing inefficiencies of database-backed
web applications in IDE,” in Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ser. ESEC/FSE ’18.
New York, NY, USA: Association for Computing Machinery, 2018, p.
884–887. [Online]. Available: https://doi.org/10.1145/3236024.3264589

[52] J. Yang, C. Yan, C. Wan, S. Lu, and A. Cheung, “View-centric
performance optimization for database-backed web applications,”
in Proceedings of the 41st International Conference on Software
Engineering, ser. ICSE ’19. IEEE Press, 2019, p. 994–1004. [Online].
Available: https://doi.org/10.1109/ICSE.2019.00104

[53] J. Zhou, P.-A. Larson, J.-C. Freytag, and W. Lehner, “Efficient
exploitation of similar subexpressions for query processing,” in
Proceedings of the 2007 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’07. New York, NY, USA:
Association for Computing Machinery, 2007, p. 533–544. [Online].
Available: https://doi.org/10.1145/1247480.1247540

