
BARRIERFINDER: Recognizing Ad Hoc Barriers
Tao Wang, Xiao Yu, Zhengyi Qiu, Guoliang Jin, Frank Mueller

Computer Science Department
North Carolina State University

Raleigh, USA
{twang15, xyu10, zqiu2, guoliang_jin, fmuelle}@ncsu.edu

Abstract—Ad hoc synchronizations are pervasive in multi-
threaded programs. Due to their diversity and complexity,
understanding the enforced synchronization relationships of ad
hoc synchronizations is challenging but crucial to multi-threaded
program development and maintenance. Existing techniques can
partially detect primitive ad hoc synchronizations, but they
cannot recognize complete implementations or infer the enforced
synchronization relationships.

In this paper, we propose a framework to automatically
identify complex ad hoc synchronizations in full and infer their
synchronization relationships for barriers. We instantiate the
framework with a tool called BARRIERFINDER, which features
various techniques, including program slicing and bounded
symbolic execution, to efficiently explore interleaving space of ad
hoc synchronizations within multi-threaded programs for their
traces. BARRIERFINDER then uses these traces to recognize
ad hoc barriers. Our evaluation shows that BARRIERFINDER
is both effective and efficient in recognizing ad hoc barriers
automatically.

Index Terms—ad hoc synchronization; barrier; symbolic exe-
cution; interprocedural program slicing; Cloud9; LLVM

I. INTRODUCTION

A. Motivation

A recent study [1] finds that programmers frequently imple-
ment their own ad hoc synchronizations for different reasons.
Researchers were able to find 6 to 83 ad hoc synchronizations,
such as ad hoc barriers, in each of the 12 studied program
suites [1]. Ad hoc synchronizations are typically unmodu-
larized and are difficult to understand and maintain. Fig. 1
shows an example to illustrate the basic concepts of ad hoc
synchronizations. The ad hoc synchronization in Fig. 1 is
formed by S2 and S3, where the shared variable flag is
called a sync variable, the while loop in S3 is a sync loop,
S2 is a sync write, and the sync loop and sync write compose
a sync pair. The sync pair formed by S2 and S3 intends to
enforce an order relationship that S1 happens before S4.

In general, because of the critical role that synchronizations
play in multi-threaded programs, it is important to have
an accurate understanding of their enforced synchronization
relationships. The state-of-art techniques can only detect sync
pairs [1] or simple busy-wait loops [2], [3], which is insuf-
ficient to understand complex ad hoc synchronizations. For
instance, Fig. 2 shows another ad hoc synchronization with

This work was funded in part by the following grants: Air Force Office
of Scientific Research AFOSR-FA9550-12-1-0442 and AFOSR-FA9550-17-1-
0205, NSF 1217748, DOE 1403482, Lawrence Livermore National Laboratory
subcontracts LLNL-B627261 and LLNL-B631308.

//Thread 1

counter = 5; //S1

flag = false; //S2

//Thread 2

while (flag); //S3

counter++; //S4

Fig. 1: An ad hoc synchronization example formed by S2

and S3. counter and flag are global variables. flag is
initialized to true.

the sync pair in lines 23 and 28 labeled, but it implements
a barrier. During software maintenance, programmers may
still experience difficulties in understanding the intended order
relationship by the sync pairs and verifying their correct-
ness [4]. Other multi-threaded program analysis tools, such
as data-race detectors [5], concurrency-bug finding tools [6],
automated bug-fixing tools [7] cannot simply depend on sync
pairs either. Instead, they may also need other contexts, such
as participating threads and the entire scope of synchronization
constructs.

Therefore, detecting the entire scope of sync pairs and
inferring their synchronization relationship is an important task
but can also be very challenging. The ad hoc barrier in Fig. 2
exemplifies the two major challenges:

• First, a sync pair, which is the only information reported
by existing ad hoc synchronization detectors, may be only
a part of an ad hoc synchronization. Without considering
extra code, it may be impossible to infer the enforced
synchronization relationship. For example, the sync pair
in Fig. 2, is only a portion of the complete ad hoc
synchronization implementing a barrier. To recognize the
ad hoc barrier, all the code from lines 12 to 29 needs to
be considered, in addition to their threading context from
lines 3 to line 6. In this example, the static control flow is
already complex, and determining the threading context
involves non-trivial interprocedural analysis.

• Second, there can be an excessive number of feasible
thread interleavings to consider for inferring synchroniza-
tion relationships and verifying their correctness. Without
a thorough exploration or a proof, one cannot be sure
what synchronization relationship is enforced by a sync
pair and relevant code constructs or if the implementation
is correct.

B. Contribution

To tackle these challenges, we propose an ad hoc synchro-
nization analysis framework to (1) automatically recognize



1 int gsense = 1, gcount = 0, P = ...; // input
2 main() {
3 for (i=1; i<P; i++)
4 pthread_create(SlaveStart, ...);
5 ...
6 SlaveStart();
7 }
8 SlaveStart() {
9 ... // computation and two barriers

10 for (...) {
11 ... // computation
12 { // barrier begin
13 int lsense = gsense;
14 while (1) {
15 int oldcount = gcount;
16 int newcount = oldcount + lsense;
17 // atomic compare exchange using assembly
18 int updatedcount = CmpXchg(&gcount,
19 oldcount, newcount);
20 if (updatedcount == oldcount) {
21 if ((newcount == P && lsense == 1)
22 or (newcount == 0 && lsense == -1)) {
23 gsense = -lsense; // the sync write
24 }
25 break;
26 }
27 }
28 while (gsense == lsense) ; // the sync loop
29 } // barrier end
30 ... // computation and one barrier
31 }
32 ... // computation and one barrier
33 }

Fig. 2: Extracted code from SPLASH2 LU

complex ad hoc synchronizations beyond simple sync pairs,
and (2) efficiently infer the enforced synchronization relation-
ships without repetitively examining equivalent interleavings.
To the best of our knowledge, no existing technique has
accounted for such complexity.

We currently instantiate the framework for automatic recog-
nition of ad hoc barriers and present BARRIERFINDER. We
choose to focus on ad hoc barriers because they are both
common and beneficial to be recognized. The ad hoc syn-
chronization study [1] reported that barriers are a common
type of synchronizations with ad hoc implementations. Further,
a recent work also shows that the recognition of barriers
can reduce the complexity of many multi-threaded program
analyses and improve many development tools [8].

Our approach capitalizes on the intuition that all ad hoc
barriers enforce a temporal invariant among different thread
interleavings. Specifically, the temporal invariant requires that
no participating threads can proceed beyond a program point
(blocking point) before the last participant has reached a
specific program point (releasing point), so that in effect
computation prior to the blocking point are finished in all
threads before computation after the blocking point can be
executed in any thread.

As shown in Fig. 3, BARRIERFINDER takes program source
code and sync pairs detected by SyncFinder [1] as inputs, and
it proceeds in four steps to determine whether each sync pair
and any relevant code compose an ad hoc barrier:

1) As a sync pair is seldom a complete ad hoc synchroniza-
tion itself, we first slice the program with sync pairs as the

slicing criteria. This helps us identify program constructs
that are also integral parts of ad hoc barriers.

2) We then analyze and instrument the program slices
with auxiliary API calls, such as scheduling and tracing
API calls. They are directives to examine the temporal
invariant of the sliced program constructs by efficient
interleaving enumeration.

3) We further symbolically execute the program to ex-
haustively enumerate nonequivalent interleavings and to
generate traces representing these interleavings.

4) Finally, we mine the interleaving traces to find predefined
temporal patterns and infer the synchronization relation-
ship. Since BARRIERFINDER focuses on ad hoc barriers,
we define patterns for barriers. BARRIERFINDER reports
whether a sync pair is part of an ad hoc barrier. If that is
the case, it reports the complete barrier implementation.

Overall, this paper makes the following contributions:
• We propose a framework to infer the synchronization

relationship enforced by ad hoc synchronizations. To our
knowledge, we are the first to analyze ad hoc synchro-
nizations beyond recognizing sync pairs.

• We instantiate our framework for ad hoc barriers and im-
plement BARRIERFINDER with several novel techniques
to account for interleaving space blow-up and to boost
its execution efficiency.

• We evaluate BARRIERFINDER on real-world programs.
Results suggest that our approach is efficient and effective
in recognizing ad hoc barriers as a whole synchronization
construct automatically.

II. EXAMPLE AND OVERVIEW

Below, we first describe the real-world example in Fig. 2
with details, and we then use it to illustrate the major steps
of BARRIERFINDER, discuss the complexity of interleaving
enumeration in the symbolic execution step, and show how
BARRIERFINDER reduces the complexity with different tech-
niques and optimizations.

A. An Illustration of the Major Steps

The code shown in Fig. 2 is extracted from a real-world pro-
gram, SPLASH2 LU [9]. Within the main function, the parent
thread first creates P-1 child threads to execute SlaveStart
and then also executes SlaveStart. Within SlaveStart,
a total of five ad hoc barriers are used. Two of the five barriers
are before the for loop in line 10, two in the for loop, and
one after the for loop. Fig. 2 shows the code for the first ad
hoc barrier in the for loop. The remaining barriers have the
same code and are omitted.

For the ad hoc barrier from lines 12 to 29 in Fig. 2,
SyncFinder [1] can only report a sync pair with a sync loop
in line 28 and a sync write in line 23, not knowing that they
are parts of this barrier. BARRIERFINDER, as shown in Fig. 3,
takes source code and sync pairs reported by SyncFinder as
input, and it then uses slicing to find more program constructs
related to synchronization. For the example in Fig. 2, we use
the reported sync write and sync loop in lines 23 and 28 as



Middle endFront end

Inter-procedural slicer

Boundary analysis

Instrumentation

Symbolic execution with
IR and IT

Trace 
mining

Synchronization 
report

Back end

SyncFinder
results

Program
code

Fig. 3: The architecture of BARRIERFINDER. IR: interleaving reduction. IT: intrusive tracing.

the slicing criteria, and we are able to retain the entire code
fragment from lines 13 to 28 after slicing.

To recognize ad hoc barriers in the sliced program, we rely
on the temporal invariant exhibited by a barrier. We argue that
all barriers exhibit the same temporal invariant, regardless of
whether they are standard ones provided by languages/libraries
or ad hoc ones. Specifically, if N threads in a program execute
the barrier code, the first N − 1 threads must always be
blocked until the N -th thread unblocks them. As a result,
if we collect a tracing event R immediately after the block
operation in the N − 1 threads and a tracing event W before
the unblock operation in the N -th thread, then all traces of
different interleavings must share the same pattern WRN , i.e.,
a W (write) followed by N instances of Rs (reads).

Based on the observation above, our approach at a high-level
is to gather program execution traces and mine the character-
istic temporal invariant to recognize ad hoc barriers. To gather
execution traces, BARRIERFINDER analyzes and instruments
the program with trace API calls that generate different outputs
representing the execution of different operations. In Fig. 2,
BARRIERFINDER instruments a trace API call immediately
before the sync write and another one immediately after the
sync loop, so that they are executed before the sync write or
after the sync loop.

With trace API calls instrumented in the sliced program,
BARRIERFINDER uses a symbolic execution engine to care-
fully schedule the program execution, so that the same in-
terleavings do not repeat. We cannot simply run the sliced
and instrumented program under a native environment to
collect traces. That is because different executions of the
sliced program without explicit scheduling control in a native
environment may only encounter a limited number of unique
interleavings of the sync regions, and any mined temporal
invariant may just be false. To symbolically execute the sliced
program of the LU code shown in Fig. 2, we make the input
variable P that determines the number of threads symbolic,
and we start from value 2 for P during symbolic execution.

To guide the symbolic execution engine to explore unique
interleavings, BARRIERFINDER further instruments the sliced
program with scheduling API calls. BARRIERFINDER’s sym-
bolic execution engine executes one thread at a time and
achieves concurrency by context switching among threads. The
scheduling directive forces the symbolic execution engine to
explore different interleavings by scheduling different threads.
BARRIERFINDER only adds scheduling API calls after in-
structions that access shared variables, since they are the only
interaction points among different threads. In Fig. 2, we have
three shared variables, gsense, gcount, and P, with three,
four, and one access(es), respectively. In particular, three of the

four accesses to gcount are within the CmpXchg function in
line 18. After instrumenting the trace and scheduling API calls,
BARRIERFINDER collects traces corresponding to different
interleavings and then checks traces against a predefined
invariant representing barriers to recognize ad hoc barriers.

B. Complexity Reduction and Enumeration

Our approach requires an efficient enumeration of thread
interleavings. For N concurrent threads each executing t in-
structions in a straight-line fashion, the combinatorial number
of sequentially consistent interleavings is (Nt)!

(t!)N
. Such a large

space presents a great challenge. Our solution entails both
insights on this interleaving space and an ensemble of novel
engineering techniques to achieve high efficiency.

Given the exponential interleaving space, we can first bound
N and t to reduce the complexity. Nevertheless, exhaustive
enumeration of all thread interleavings is still impractical. To
make it feasible, we design a series of techniques to reduce
the upper bound of the possible interleavings and optimize the
enumeration process, so that our approach becomes feasible
on complex multi-threaded programs. Next, we demonstrate
these techniques on our example.

1) Scheduling Scope Reduction: We first introduce slicing-
based scheduling scope reduction, which reduces the total
number of instructions to be executed in the target program,
and then heuristically partitions the instructions retained after
slicing into sync regions. We consider a sync region as the
unit that contains one high-level ad hoc synchronization.

During interleaving enumeration, our approach uses all the
sliced sync regions as the scheduling scope instead of the
entire program. As a result, the length of the program t in the
complexity upper bound is reduced to the length of the sync
region c, where c is significantly smaller than t in practice.
If the number of threads in sync regions is sufficiently small,
our analysis may be able to exhaustively enumerate all possible
interleavings in a reasonable amount of time.

The LU code shown in Fig. 2 has five ad hoc barriers.
One is fully shown in lines 13 to 28, and four others are
omitted in comments. SyncFinder reports a sync pair for each
individual barrier. After slicing with respect to these sync
pairs, BARRIERFINDER can determine that the code from lines
13 to 28 is consecutive as it was before slicing, forming a
natural boundary between synchronization and computation.
As a result, our scheduling scope reduction technique uses
lines 12 and 29 as the boundary to form the sync region for
the barrier shown. Other barriers are handled similarly.

2) Avoiding Equivalent Interleavings: After scheduling
scope reduction, there are still other types of enumeration



TABLE I: Overall results of BARRIERFINDER on SPLASH2 with slicing, intrusive tracing, and interleaving reduction

Benchmark LOC. LOB. Slicing time Patterns (#) T Ts Tr Tst Tsr Tstr
Tsr
Tstr

FFT 1.2k 4679 0.2 (0.001) barriers (7) OOR OOR 57.6 (0.44) OOR 17.4 (0.1) 1.3 (0.06) 13.4
Cholesky 6.1k 26479 94.8 (0.17) barriers (4) N/A N/A N/A OOR 24 (0.3) 2.5 (0.06) 9.6
Raytrace 11k 24173 15.8 (0.04) barriers (1) N/A N/A N/A 8.6∗ (0.06) 17.4∗(0.06) 8.3∗(0.08) 2.1
Radix 1.2k 3856 0.1 (0.02) barriers (7) OOR OOR OOR OOR 108.8 (1.0) 4.5 (0.17) 24.2
LU 1.1k 4555 0.53 (0.001) barriers (5) N/A N/A N/A OOR 31.3 (0.2) 1.7 (0.01) 18.4
FMM 5k 16583 18.2 (0.1) barriers (10) OOR OOR 355.4 (7.8) OOR 333.5 (1.6) 12.3 (0.08) 27.1

inefficiencies due to interleaving equivalence, namely, inter-
leavings which have the same execution context. Since a
program’s behavior depends only on its current states not
its historical schedulings or states, equivalent interleavings
are guaranteed to produce the same results in the future. To
avoid enumerating equivalent interleavings, we use a context-
based equivalence testing technique to reduce all equivalent
interleavings.

For consecutive sync regions, such as the two barriers
omitted in line 9 in Fig. 2, we perform the testing at the
ending boundary of each region. Assuming r consecutive sync
regions each with I interleavings, the complexity of naively
enumerating all of them is O(Ir) without equivalence testing.
With equivalence testing, only one interleaving will continue
its execution at the end of each sync region at best while
all equivalent others are terminated, and the complexity of
exploring all of them is reduced to O(I ∗ r). We call this
technique interleaving reduction (IR).

3) Intrusive Tracing: At first, per-interleaving traces are
initially generated and stored in a trace buffer within the
address space of the program being interpreted. Whenever an
interleaving is terminated, BARRIERFINDER symbolic execu-
tion engine directly accesses and dumps the trace buffer into
a trace file without the interpretee’s involvement for maximal
execution efficiency. We call this technique intrusive tracing.

III. EXPERIMENTAL EVALUATION

A. Methodology and Experimental Settings

We implemented BARRIERFINDER’s front end on top of
LLVMSlicer [10], and the boundary analysis and instrumenta-
tion pass is implemented as a sub-pass inside the slicer. BAR-
RIERFINDER’s middle end is built on top of Cloud9 [11], for
its flexible interpretation and symbolic execution capabilities.
The back end is a stand-alone python package, which separates
collected sync traces into independent ones and maps them
back to their corresponding program source code contexts.

We conduct empirical experiments to evaluate the efficiency
and effectiveness of BARRIERFINDER on the SPLASH2 [9]
suite. All measurements are conducted on a machine with Intel
Core i7-4790 @ 3.60 GHz (hyper-threading enabled), 16GB
DDR3@1666 MHz memory, and Ubuntu 15.10 as the oper-
ating system. SPLASH2 is used in Xiong et al. [1]’s ad hoc
synchronization study as a representative suite for scientific
applications. These programs contain complex control flows
and many functions in order to show the intellectual merits of
BARRIERFINDER.

BARRIERFINDER takes sync pairs as input. Since
SyncFinder [1] is no longer maintained by the original authors
and the code is not available to us, sync-pair annotations are

manually inserted. Note that sync pairs are low-level primitive
synchronization constructs in that they are just busy-wait
loops and write accesses to shared variables. They are neither
complete implementations of ad hoc synchronizations nor do
they indicate the enforced synchronization relationships.

B. Results on Real-World Benchmarks

Tab. I shows the results for the six SPLASH2 benchmarks
currently supported by BARRIERFINDER. Column “LOC” lists
the number of lines of C source code, and column “LOB”
lists the number of lines of LLVM bitcode. We then show the
slicing time of BARRIERFINDER’s front end and the number
of ad hoc barriers (column “Patterns (#)”). We next show
the runtime of BARRIERFINDER to exhaustively enumerate
the interleavings with the number of threads bounded to
2. For the remaining columns, subscripts r, s, and t rep-
resent interleaving reduction, program slicing, and intrusive
tracing, respectively. Different subscript combinations show
the runtimes consumed by BARRIERFINDER’s middle end
with different optimizations enabled. For example, Tstr is
the runtime with all three optimizations enabled, while Tst

is the runtime with slicing and intrusive tracing enabled but
interleaving reduction disabled. N/A indicates benchmark
crashes, and OOR indicates the execution runs out of memory.
Runtimes (in seconds) are averaged for 10 runs, with their
standard deviations in parentheses.

We make the following observations from our results:
1© BARRIERFINDER is effective in detecting different num-

bers of ad hoc barriers in these benchmarks, and we manually
confirmed that BARRIERFINDER detects all the barriers in
each benchmark. To the best of our knowledge, BARRI-
ERFINDER is the first tool to have such a capability. No prior
work, including SyncFinder [1], can detect any of these ad
hoc barriers for what they are. Our predefined trace pattern for
barriers is WRN as mentioned in II-A. The trace generated
for two consecutive barriers in LU is 11WRR22WRR with
11 and 22 as the trace separators. The two characteristic sub-
traces WRR match our predefined temporal invariant, and
their corresponding sync regions are accordingly reported as
barriers. The sync regions contain both the upper and lower
loops in Fig. 2. The detected pattern and sync region reports
show that BARRIERFINDER is able to pinpoint the entire
code construct of ad hoc barriers and recognize their barrier
semantics. Note that it is possible for BARRIERFINDER to
report false positives since it can only exhaustively enumerate
the interleaving space when there are only two participating
threads. However, there is no such case in our evaluation
and we are unaware of such code in practice. False negatives
cannot occur solely due to the bounded number of threads,



because an ad hoc barrier has to enforce the temporal invariant
even if there are only two participating threads.

2© BARRIERFINDER is efficient in recognizing ad hoc
barriers. Specifically, column “Tstr” in Tab. I shows the time
spent in the middle end, which is usually less than 10 seconds
for two threads. This shows our optimization techniques,
combined together, make our approach quite efficient.

3© Interleaving reduction is the critical technique that en-
ables BARRIERFINDER to efficiently enumerate the interleav-
ing space of ad hoc barriers. Column “Tst” shows the runtimes
of the middle end with slicing and intrusive tracing enabled but
without interleaving reduction (IR). Except for Raytrace that
contains only one barrier, all benchmarks run out of memory
resources in less than two minutes and progress is very slowly
after that. In comparison, runtimes in column “Tstr” show that
IR is critical for BARRIERFINDER’s efficiency.

4© Slicing is critical for BARRIERFINDER’s middle end to
succeed in analyzing the benchmarks. As shown in column
“Tr”, without slicing, BARRIERFINDER’s middle end crashes
for Cholesky, Raytrace, and LU. The cause is rooted in
Cloud9, but all benchmarks succeed with slicing enabled. The
slicing overhead for FFT, Radix, and LU is small, but it is
higher for Cholesky and Raytrace. The general trend is that
larger benchmarks incur higher slicing overhead. The benefit
of slicing is that it eliminates code that is irrelevant to syn-
chronization explorations and improves middle-end efficiency,
which is substantiated by comparing Tsr and Tr for FFT.
Without slicing, the runtime for Radix is also prohibitively
high as its computation exhausts main memory quickly.

5© Intrusive tracing boosts BARRIERFINDER’s middle-end
performance by up to 27X. Column “ Tsr

Tstr
” in Tab. I indicates

a significant speedup due to our trace optimization technique,
which crosses the interpreter-interpretee boundary.

IV. RELATED WORK

Several empirical studies related to synchronizations have
been performed. Xiong et al. [1] characterize ad hoc synchro-
nizations of representative open-source applications and find
they are pervasive. Existing techniques [1], [2] use either
static or dynamic approaches to detect sync pairs. We proceed
further to detect complete synchronizations and recognize
enforced synchronization relationships.

V. CONCLUSION AND FUTURE WORK

This paper contributes BARRIERFINDER, a pipelined frame-
work to automate the recognition of complex ad hoc syn-

Our approach recognizes ad hoc barriers by mining exe-
cution traces for temporal invariants. Invariant mining is a
technique pioneered by Daikon [12], and our approach shares
many common elements with Daikon, e.g., generating concrete
traces and mining traces for invariants. Similar to our work,
researchers have also explored temporal invariant mining for
different purposes. Beschastnikh et al. [13] propose techniques
to mine temporal invariants based on partially ordered logs,
and CSight [14] further uses temporal invariants to model
concurrent systems. CloudSeer [15] uses temporal invariants
to model the workflow of cloud systems and then uses the
models for monitoring purposes. Instead, we focus on inferring
the synchronization relationship of ad hoc synchronizations.

chronizations that realize barriers. The experimental evaluation
shows that BARRIERFINDER is able to detect barriers in 6
SPLASH2 benchmarks efficiently. In the future, we plan to ex-
tend BARRIERFINDER to support benchmarks with loops and
more threads, as they may present new efficiency challenges.
In addition, we want to evaluate BARRIERFINDER on other
larger modern scientific benchmarks with OpenMP pragmas
to help programmers diagnose data races.

REFERENCES

[1] W. Xiong, S. Park, J. Zhang, Y. Zhou, and Z. Ma, “Ad hoc syn-
chronization considered harmful,” in Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation, ser.
OSDI’10. Berkeley, CA, USA: USENIX Association, 2010.

[2] A. Jannesari and W. F. Tichy, “Library-independent data race detection,”
IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 10,
pp. 2606–2616, 2014.

[3] X. Yuan, Z. Wang, C. Wu, P.-C. Yew, W. Wang, J. Li, and D. Xu,
“Synchronization identification through on-the-fly test,” in Proceedings
of the 19th International Conference on Parallel Processing, ser. Euro-
Par’13. Berlin, Heidelberg: Springer-Verlag, 2013, pp. 4–15.

[4] R. Gu, G. Jin, L. Song, L. Zhu, and S. Lu, “What change history tells
us about thread synchronization,” in Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, ser. ESEC/FSE 2015.
New York, NY, USA: ACM, 2015, pp. 426–438.

[5] D. Lee, P. M. Chen, J. Flinn, and S. Narayanasamy, “Chimera: Hybrid
Program Analysis for Determinism,” in Proceedings of the 33rd ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, ser. PLDI ’12. New York, NY, USA: ACM, 2012.

[6] W. Zhang, C. Sun, and S. Lu, “Conmem: Detecting severe concurrency
bugs through an effect-oriented approach,” in Proceedings of the Fif-
teenth Edition of ASPLOS on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS XV. New York, NY,
USA: ACM, 2010, pp. 179–192.

[7] G. Jin, W. Zhang, D. Deng, B. Liblit, and S. Lu, “Automated
concurrency-bug fixing,” in Proceedings of the 10th USENIX Confer-
ence on Operating Systems Design and Implementation, ser. OSDI’12.
Berkeley, CA, USA: USENIX Association, 2012, pp. 221–236.

[8] M. Das, G. Southern, and J. Renau, “Section-based program analysis to
reduce overhead of detecting unsynchronized thread communication,”
ACM Trans. Archit. Code Optim., vol. 12, no. 2, Jun. 2015.

[9] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The splash-
2 programs: Characterization and methodological considerations,” in
Proceedings of the 22Nd Annual International Symposium on Computer
Architecture, ser. ISCA ’95. New York, NY, USA: ACM, 1995.

[10] M. Chalupa, M. Jonáš, J. Slaby, J. Strejček, and M. Vitovská, “Symbiotic
3: New slicer and error-witness generation,” in Tools and Algorithms for
the Construction and Analysis of Systems, M. Chechik and J.-F. Raskin,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016.

[11] S. Bucur, V. Ureche, C. Zamfir, and G. Candea, “Parallel symbolic
execution for automated real-world software testing,” in Proceedings of
the sixth conference on Computer systems. ACM, 2011, pp. 183–198.

[12] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao, “The daikon system for dynamic detection of
likely invariants,” Science of Computer Programming, vol. 69, 2007.

[13] I. Beschastnikh, Y. Brun, M. D. Ernst, A. Krishnamurthy, and T. E.
Anderson, “Mining temporal invariants from partially ordered logs,” in
Managing Large-scale Systems via the Analysis of System Logs and the
Application of Machine Learning Techniques, ser. SLAML ’11. New
York, NY, USA: ACM, 2011, pp. 3:1–3:10.

[14] I. Beschastnikh, Y. Brun, M. D. Ernst, and A. Krishnamurthy, “Inferring
models of concurrent systems from logs of their behavior with csight,”
in Proceedings of the 36th International Conference on Software Engi-
neering, ser. ICSE 2014. New York, NY, USA: ACM, 2014.

[15] X. Yu, P. Joshi, J. Xu, G. Jin, H. Zhang, and G. Jiang, “Cloudseer:
Workflow monitoring of cloud infrastructures via interleaved logs,” ser.
ASPLOS ’16. New York, NY, USA: ACM, 2016, pp. 489–502.


